A New Semi-Lagrangean Relaxation for the K-Cardinality Assignment Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangean/surrogate relaxation for generalized assignment problems

This work presents Lagrangean/surrogate relaxation to the problem of maximum pro®t assignment of n tasks to m agents (n > m), such that each task is assigned to only one agent subject to capacity constraints on the agents. The Lagrangean/surrogate relaxation combines usual Lagrangean and surrogate relaxations relaxing ®rst a set of constraints in the surrogate way. Then, the Lagrangean relaxati...

متن کامل

Lagrangean Relaxation with Clusters for the Uncapacitated Facility Location Problem

A good strategy for the solution of a large-scale problem is its division into small ones. In this context, this work explores the lagrangean relaxation with clusters (LagClus) that can be applied to combinatorial problems modeled by conflict graphs. By partitioning and removing the edges that connect the clusters of vertices, the conflict graph is divided in subgraphs with the same characteris...

متن کامل

Approximating k-cuts using Network Strength as a Lagrangean Relaxation

Given an undirected, edge-weighted connected graph, the k-cut problem is to partition the vertex set into k non-empty connected components so as to minimize the total weight of edges whose end points are in different components. We present a combinatorial polynomial-time 2-approximation algorithm for the k-cut problem. We use a La-grangean relaxation (also suggested by Barahona [2]) to reduce t...

متن کامل

Lagrangean Relaxation Bounds for Point-feature Cartographic Label Placement Problem

The objective of the point-feature cartographic label placement problem (PFCLP) is to give more legibility to an automatic map creation, placing point labels in clear positions. Many researchers consider distinct approaches for PFCLP, such as to obtain the maximum number of labeled points that can be placed without overlapping or to obtain the maximum number of labeled points without overlaps c...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2014

ISSN: 1556-5068

DOI: 10.2139/ssrn.2380024