A New Semi-Lagrangean Relaxation for the K-Cardinality Assignment Problem
نویسندگان
چکیده
منابع مشابه
Lagrangean/surrogate relaxation for generalized assignment problems
This work presents Lagrangean/surrogate relaxation to the problem of maximum pro®t assignment of n tasks to m agents (n > m), such that each task is assigned to only one agent subject to capacity constraints on the agents. The Lagrangean/surrogate relaxation combines usual Lagrangean and surrogate relaxations relaxing ®rst a set of constraints in the surrogate way. Then, the Lagrangean relaxati...
متن کاملLagrangean Relaxation with Clusters for the Uncapacitated Facility Location Problem
A good strategy for the solution of a large-scale problem is its division into small ones. In this context, this work explores the lagrangean relaxation with clusters (LagClus) that can be applied to combinatorial problems modeled by conflict graphs. By partitioning and removing the edges that connect the clusters of vertices, the conflict graph is divided in subgraphs with the same characteris...
متن کاملApproximating k-cuts using Network Strength as a Lagrangean Relaxation
Given an undirected, edge-weighted connected graph, the k-cut problem is to partition the vertex set into k non-empty connected components so as to minimize the total weight of edges whose end points are in different components. We present a combinatorial polynomial-time 2-approximation algorithm for the k-cut problem. We use a La-grangean relaxation (also suggested by Barahona [2]) to reduce t...
متن کاملLagrangean Relaxation Bounds for Point-feature Cartographic Label Placement Problem
The objective of the point-feature cartographic label placement problem (PFCLP) is to give more legibility to an automatic map creation, placing point labels in clear positions. Many researchers consider distinct approaches for PFCLP, such as to obtain the maximum number of labeled points that can be placed without overlapping or to obtain the maximum number of labeled points without overlaps c...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2014
ISSN: 1556-5068
DOI: 10.2139/ssrn.2380024